

DATOS BÁSICOS DE LA GUÍA DOCENTE:

Materia:	QUÍMICA GENERAL E INORGÁNICA			
Identificador:	34034			
Titulación:	MÁSTER EN DIRECCIÓN TÉCNICA DE LABORATORIOS FARMACÉUTICOS			
Módulo:				
Tipo:	OBLIGATORIA			
Curso:	1	Periodo lectivo:	Anual	
Créditos:	3	Horas totales:	75	
Actividades Presenciales:	10	Trabajo Autónomo:	65	
Idioma Principal:	Castellano	Idioma Secundario:	Inglés	
Profesor:		Correo electrónico:		

PRESENTACIÓN:

La química es una disciplina fundamental en la formación básica del profesional farmacéutico que aporta conceptos clave para entender fenómenos, procesos y aplicaciones de diversa índole en su desempeño profesional.

En esta asignatura se van a presentar y discutir las unidades temáticas clásicas de cualquier asignatura de Química universitaria pero con ejemplos contextualizados en la práctica farmacéutica: estructura atómica, configuraciones electrónicas, tabla periódica, bioinorgánica, enlace químico, fuerzas intermoleculares y reacciones químicas. Adicionalmente, en uno de los seminarios propuestos, se describirán en profundidad los compuestos de coordinación y se revisarán algunos de sus aplicaciones terapeúticas más significativas en la actualidad.

COMPETENCIAS PROFESIONALES A DESARROLLAR EN LA MATERIA:

Competencias Generales de la titulación	G03	Utilizar estrategias de aprendizaje de forma autónoma para su aplicación en la mejora continua del ejercicio profesional.
	G05	Cooperar para la consecución de resultados comunes mediante el trabajo en equipo en un contexto de integración, colaboración y potenciación de la discusión crítica.
	G06	Razonar de manera crítica basándose en la información, datos y líneas de actuación y su aplicación en temas relevantes de índole social, científico o ético.
	G07	Aplicar la creatividad, independencia de pensamiento, autocrítica y autonomía en el ejercicio profesional.
	G10	Elegir entre diferentes modelos complejos de conocimiento para su aplicación a la resolución de problemas.
Competencias Específicas de la titulación	E04	Estimar los riesgos asociados a la utilización de sustancias químicas y procesos de laboratorio.
	E06	Conocer y comprender las características de las reacciones en disolución, los diferentes estados de la materia y los principios de la termodinámica y su aplicación a las ciencias farmacéuticas.
	E07	Conocer y comprender las propiedades características de los elementos y sus compuestos, así como su aplicación en el ámbito farmacéutico.
Resultados de Aprendizaje	R01	Explicar razonadamente la estructura del átomo, a través de las principales teorías que existen para tal efecto, y la influencia de la misma sobre las propiedades periódicas de los elementos químicos.
	R02	Describir las principales propiedades, características y aplicaciones de los elementos y compuestos de naturaleza inorgánica con aplicaciones farmacéuticas.
	R03	Discutir la geometría de moléculas sencillas a partir de las diferentes teorías esenciales de enlace químico.
	R04	Identificar los distintos tipos de reacciones químicas y reconocerlas cuando se trata de reactivos con aplicación en el campo farmacéutico.
	R05	Resolver problemas teórico-prácticos de manera razonada utilizando los conceptos de la asignatura.
	R06	Resolver problemas experimentales en el laboratorio relacionados con el contenido teórico práctico y siguiendo las buenas prácticas de laboratorio.

REQUISITOS PREVIOS:

Aunque a priori no es necesario ningún requisito adicinal a los establecidos por la normativa para acceder al máster, es aconsejable que los/ As estudiantes tengo nociones básicas de Química General, aunque en el diseño de

FI-010 - 1 - Rev.003

los materiales didácticos se han incluido enlaces a recursos audiovisuales (propuestas de activación y ampliación) que faciliten la comprensión de los contenidos de la asignatura.

PROGRAMACIÓN DE LA MATERIA:

Contenidos de la materia:

- 1 ESTRUCTURA ATÓMICA, CONFIGURACIÓN ELECTRÓNICA Y TABLA PERIÓDICA
- 2 INORGÁNICA DESCRIPTIVA EN UN CONTEXTO FARMACÉUTICO
- 3 ENLACE QUÍMICO Y FUERZAS INTERMOLECULARES
- 4 REACCIONES QUÍMICAS EN UN CONTEXTO FARMACÉUTICO
- 5 COMPUESTOS DE COORDINACIÓN Y APLICACIONES TERAPEÚTICAS Y FARMACÉUTICAS (SEMINARIO)

La planificación de la asignatura podrá verse modificada por motivos imprevistos (rendimiento del grupo, disponibilidad de recursos, modificaciones en el calendario académico, etc.) y por tanto no deberá considerarse como definitiva y cerrada.

METODOLOGÍAS Y ACTIVIDADES DE ENSEÑANZA Y APRENDIZAJE:

Metodologías de enseñanza-aprendizaje a desarrollar:

- METODOLOGÍA EXPOSITIVA: presentación de los contenidos temáticos de las distintas unidades estructurados lógicamente para facilitar su comprensión, e intercalando ejemplos aplicados al contexto de un laboratorio farmacéutico
- METODOLOGÍA PRÁCTICA: planteamiento de ejercicios prácticos (con solucionario disponible para autoevaluación) y una sesión de trabajo en laboratorio, con el objetivo común de que los/ las estudiantes apliquen los conceptos teóricos de la asiganatura a la resolución de problemas aplicados al contexto de un laboratorio farmacéutico.
- TRABAJO AUTÓNOMO: aprendizaje activo, más reflexivo y menos memoristico, dirigido a fomentar el aprender a aprender, adaptado al ritmo individual de cada estudiante. Estos/ as contarán además con unos foros de discusión en los que plantear dudas que podrán ser resueltas por la docente, pero en las que los propios/ as estudiantes podrán interactuar y darse soporte en el aprendizaje.

Volumen de trabajo del alumno:

Modalidad organizativa	Métodos de enseñanza	Horas estimadas
Actividades Presenciales	Clase magistral	4
	Prácticas de laboratorio	4
	Actividades de evaluación	2
Trabajo Autónomo	Estudio individual	30
	Preparación de trabajos individuales	25
	Lecturas obligatorias	10
	Horas totales:	75

SISTEMA DE EVALUACIÓN:

Obtención de la nota final:

Prueba final:	55	%
Evaluación de un producto:		%
Evaluación de una demostración:		%
TOTAL	100	%

FI-010 - 2 - Rev.003

*Las observaciones específicas sobre el sistema de evaluación serán comunicadas por escrito a los alumnos al inicio de la materia.

BIBLIOGRAFÍA Y DOCUMENTACIÓN:

Bibliografía básica:

PETRUCCI, R.H. Química General. Madrid: Pearson Prentice Hall, 2003 (última edición 2011)

Bibliografía recomendada:

COLACIO RODRÍGUEZ, E. Fundamentos de enlace y estructura de la materia. Madrid: Anaya, 2004 CHANG, R. Química. Madrid: McGraw Hill, 2007 (última edición 2013 ROSENBERG, J.L. Química (serie Shaum). Madrid: McGraw Hill, 2014 CRICHTON, R.R. Biological Inorganic Chemistry. Amsterdam: Elservier, 2008

Páginas web recomendadas:

* Guía Docente sujeta a modificaciones

FI-010 - 3 - Rev.003