![]() | Guía Docente 2024-25 CRIPTOGRAFIA |
DATOS BÁSICOS DE LA GUÍA DOCENTE:
Materia: | CRIPTOGRAFIA | ||
Identificador: | 30082 | ||
Titulación: | GRADUADO EN INGENIERÍA INFORMÁTICA. PLAN 2008 (BOE 15/12/2008) | ||
Módulo: | GESTION DE LA INFORMACION Y EL CONOCIMIENTO | ||
Tipo: | OPTATIVA | ||
Curso: | 3 | Periodo lectivo: | Primer Cuatrimestre |
Créditos: | 3 | Horas totales: | 75 |
Actividades Presenciales: | 36 | Trabajo Autónomo: | 39 |
Idioma Principal: | Inglés | Idioma Secundario: | Inglés |
Profesor: | Correo electrónico: |
PRESENTACIÓN:
This subject provides an introduction to the fundamental concepts, theory and application of cryptography, which a fundamental part of cybersecurity. Different cryptographic techniques and encryption algorithms will be studied and examined. The main goal is to analyse the practical application of modern cryptography.
COMPETENCIAS PROFESIONALES A DESARROLLAR EN LA MATERIA:
General programme competences | G02 | Innovative capacity to propose and find new and efficient ways to undertake any task and/ or function within the professional environment - highly motivated by quality. |
G03 | Capacity to work in multidisciplinary teams to achieve common objectives, placing group interests before personal ones. | |
G10 | Critical and analytical capacity when assessing information, data and courses of action. | |
G12 | Capacity to undertake professional activities with integrity, respecting social, organisational and ethical norms. | |
G13 | Capacity to use individual learning strategies aimed at continuous improvement in professional life and to begin further studies independently. | |
G14 | Capacity for abstraction to handle various complex knowledge models and apply them to examining and solving problems. | |
G15 | Capacity to structure reality by means of linking objects, situations and concepts through logical mathematical reasoning. | |
Specific programme competences | E01 | Capacity to understand the engineering profession and commitment to serve society under the corresponding professional code of conduct. |
E02 | Capacity to apply the intrinsic engineering principles based on mathematics and a combination of scientific disciplines. | |
E03 | Capacity to recognise the technical principles and apply the appropriate practical methods satisfactorily to analyse and solve engineering problems. | |
E08 | Capacity to communicate productively with clients, users and colleagues both orally and in writing, so as to pass on ideas, solve conflicts and achieve agreements. | |
E10 | Capacity to understand and assess the impact of technology on individuals, organisations, society and the environment, including ethical, legal and political factors, recognising and applying the pertinent standards and regulations.s éticos, legales y políticos, reconociendo y aplicando los estándares y regulaciones oportunos | |
E12 | Capacity to manage complexity through abstraction, modelling, 'best practices', patterns, standards and the use of the appropriate tools. | |
E13 | Capacity to identify, assess and use current and emerging technologies, considering how they apply in terms of individual or organisational needs. | |
E17 | Capacity to identify and analyse user needs with the intention of designing effective, usable IT solutions which can be incorporated into the user's operating environment. | |
Learning outcomes | R01 | Evaluar las fortalezas y debilidades de seguridad de diferentes aplicaciones a través de distintos métodos criptográficos |
R02 | Implementar un algoritmo criptográfico completo. | |
R03 | Entender los conceptos matemáticos sobre los que se apoyan los distintos métodos criptográficos | |
R04 | Distinguir y utilizar los conceptos principales de la criptografía. | |
R05 | Comparar las diferentes herramientas criptográficas | |
R06 | Conocer los diferentes problemas de seguridad de la sociedad de la información |
REQUISITOS PREVIOS:
PROGRAMACIÓN DE LA MATERIA:
Contenidos de la materia:
1 - Cryptography as part of cybersecurity |
1.1 - Cybersecurity concepts |
1.2 - Vulnerabilities, threats and risks |
1.3 - Cybersecurity protections |
1.4 - Basic cybersecurity tools |
2 - Introduction to cryptography |
2.1 - Principles, terms and meanings |
2.2 - Basic number theory |
2.3 - Classical, symmetric and asymmetric encryption techniques and algorithms |
2.4 - Cryptographic hash functions |
2.5 - Cryptanalysis: decrypting the encrypted |
3 - Symmetric encryption |
3.1 - Purpose and operation |
3.2 - Block and stream ciphers |
3.3 - Substitution and permutation |
3.4 - Triple DES (3DES) |
3.5 - Advanced Encryption Standard (AES) |
4 - Cryptographic hashing |
4.1 - Purpose and operation |
4.2 - Hash functions: cyclic redundancy checks, checksums, key cryptographic hash functions (MD5, SHA, ...) |
5 - Asymmetric encryption |
5.1 - Purpose and operation |
5.2 - Diffie-Hellman key exchange |
5.3 - RSA Public-Key encryption |
5.4 - Key negotiation and distribution |
5.5 - Message exchanges, authentication, non-repudiation |
6 - Applications of cryptography |
6.1 - Digital signatures, digital certificates, certification authorities and Public-Key Infrastructures (PKI) |
6.2 - Cryptography in communication protocols: SSL/TLS, VPN, SSH |
6.3 - Introduction to blockchain and cryptocurrencies |
La planificación de la asignatura podrá verse modificada por motivos imprevistos (rendimiento del grupo, disponibilidad de recursos, modificaciones en el calendario académico, etc.) y por tanto no deberá considerarse como definitiva y cerrada.
METODOLOGÍAS Y ACTIVIDADES DE ENSEÑANZA Y APRENDIZAJE:
Metodologías de enseñanza-aprendizaje a desarrollar:
This course will use the following methodologies in order to give the students the best opportunity to develop their competences: lectures, practical cases, exercises and cousework presentations.
Participation in class will be accounted in the final score.
All readings, practices and works will be announced using the Online University Platform (pdu.usj.es).
Volumen de trabajo del alumno:
Modalidad organizativa | Métodos de enseñanza | Horas estimadas |
Actividades Presenciales | ||
Clase magistral | 10 | |
Resolución de prácticas, problemas, ejercicios etc. | 13 | |
Exposiciones de trabajos de los alumnos | 2 | |
Talleres | 7 | |
Actividades de evaluación | 4 | |
Trabajo Autónomo | ||
Asistencia a tutorías | 5 | |
Estudio individual | 15 | |
Preparación de trabajos individuales | 15 | |
Otras actividades de trabajo autónomo | 4 | |
Horas totales: | 75 |
SISTEMA DE EVALUACIÓN:
Obtención de la nota final:
Pruebas escritas: | 50 | % |
Trabajos individuales: | 45 | % |
Participation: | 5 | % |
TOTAL | 100 | % |
*Las observaciones específicas sobre el sistema de evaluación serán comunicadas por escrito a los alumnos al inicio de la materia.
BIBLIOGRAFÍA Y DOCUMENTACIÓN:
Bibliografía básica:
KATZ Jonathan and LINDELL Yehuda. Introduction to Modern Cryptography, 2nd Edition (Chapman & Hall/ CRC Cryptography and Network Security Series). CRC Press 2014. |
Schneier, Bruce, Kohno, Tadayoshi, Ferguson, Niels & Bruce Schneier & Tadayoshi Kohno. Cryptography Engineering: Design Principles and Practical Applications. John Wiley & Sons, Inc, 2012 |
Bibliografía recomendada:
Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone. Handbook of applied cryptography. CRC Press, 2001 |
M. MARTIN, Keith. Everyday Cryptography, Fundamental Principles and Applications. Oxford, 2017 |
Páginas web recomendadas:
Bruce Schneier web site | https://www.schneier.com/ |
CrypTool 2 (CT2): programa de código abierto para Windows, con una interfaz de usuario a través de la cual se puede probar diferentes técnicas de cifrado. | https://www.cryptool.org |
Daniel Miessler Cybersecurity Blog | https://danielmiessler.com/blog/ |
Infosecurity Magazine | https://www.infosecurity-magazine.com/ |
The hacker news | https://thehackernews.com/ |
* Guía Docente sujeta a modificaciones